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1.	Introduction		
We	are	proposing	a	one-year	pilot	research	program,	within	the	DOE	HEP	Center	for	
Computational	Excellence	 (HEP-CCE),	 that	will	 inform	 the	 further	development	of	
novel	advanced	pattern	recognition	algorithms	for	the	LHC	tracking	detectors	with	
further	applications	in	HEP	tracking	at	large.			
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2	
Tracking	algorithms	measure	 the	curvature	of	the	trajectories of	charged	particles	
as	they	propagate	in	a	magnetic	field.	From	the	curvature	one can	deduce	the	charge	
and	momentum	 of	 the	 electrons	 and	muons	 produced,	 for	 example,	 in	 an	 ultra-
relativistic	 proton-proton	 collision	 at	 the	 LHC.	 This	 allows	 separating	 interesting	
new	physics	processes	(e.g.	production	of	a	supersymmetric	particle)	from	Standard	
Model	background	signals.	Typically	tracking	consists	of	a	pattern	recognition	step,	
in	 which	 the	 signals	 left	 by	 charged	 particles	 as	 they	 propagate	 out	 from	 the	
interaction	 point	 through	 the	 detector	 are	 connected	 into	 a	 track	 candidate;	
followed	by	a	 track	 fitting	step	 in	which	 the	 track	candidate	 trajectories	are	 fitted	
against	a	detailed	track	propagation	model.	A	brief	introduction	to	LHC	Tracking	can	
be	found	in	Appendix	6,	and	there	are	many	extensive	reviews	of	this	subject	[FRUB,	
RAGU].	

This	pilot	will	provide	an	end-to-end	strategy	to	optimize	LHC	tracking	algorithms,	
from detector data simulation, to a reference tracking solution against which
tracking	 algorithms	 can	 be	 evaluated	 and	 validated.	 We	 will	 demonstrate	 the	
effectiveness	 of	 this	 approach	 in	 the	 pilot	 project	 by developing	 an	 optimized,	
scalable	 track	 formation	 algorithm.	 	 Additionally	 the	 pilot	 will	 guide	 tracking	
algorithm	developments	for	Liquid	Argon	Time	Projection	Chamber	based	(LArTPC)	
experiments	 that	will	measure	 precisely	 the	 neutrino	 oscillation	 parameters	 and	
investigate	the	origin	of	CP	violation		

The	research	team	is	a	partnership	between	the	high	energy	physics	and	computer	
science	communities	within	DOE	which	includes	members	of	two	LHC	experiments	
(ATLAS	and	CMS),	with	tracking	expertise	and	access	to	development	efforts	 from	
both	 experiments,	 members	 of	 the	 LArTPC	 community,	 as	 well	 as	 computer	
scientists	 with	 expertise	 in	 large-scale	 data	 analytics,	 computational	 vision,	 and	
statistical	learning	from	Berkeley	and	Caltech.		
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2.	Research	Goals	and	Impact	

2.1	Summary	of	Goals	and	Objectives	
Here,	we	propose	a	one-year	pilot	project	to	evaluate	and	broaden	the	range	
of	 computational	 techniques	 and	 algorithms	 utilized	 in	 addressing	 the	 LHC	
upgrade	tracking	challenge.	The	pilot	will	be	executed	by	a	partnership	between	
the	 high-energy	 physicists	 and	 computer	 scientists	 at	 Berkeley,	 Fermilab	 and	
Caltech.	 Specifically	 this	 one-year	 pilot	 will	 provide	 a	 framework	 (Figure	 1)	 to	
develop	 and	 evaluate	 new	 algorithms	 for	 track	 finding	 and	 classification.	 The	
framework	 will	 be	 demonstrated	 by	 applying	 advanced	 pattern	 recognition	
techniques	to	track	candidate	formation.	

2.2	Impact	
		We	believe	 that	 incremental	optimization	of	current	LHC	 tracking	algorithms	has	
reached	the	point	of	diminishing	returns.	These	algorithms	will	not	be	able	to	cope	
with	the	10-100x	increase	in	HL-LHC	data	rates	anticipated	to	exceed	O(100)	GB/s	
by	 2025,	 without	 large	 investments	 in	 computing	 hardware	 and	 software	
development	 or	 without	 severely	 curtailing	 the	 Physics	 reach	 of	 HL-LHC	
experiments.	An	optimized	track	formation	algorithm	that	scales	linearly	with	LHC	
luminosity,	 rather	 than	 quadratically	 or	worse,	may	 lead	 by	 itself	 to	 an	 order	 of	
magnitude	 improvement	 in	 the	 track	processing	 throughput	without	affecting	 the	
track	identification	performance,	hence	maintaining	the	physics	performance	intact.	

The	one	year	pilot-project	we	propose	will	enable	and	inform	further	research	
necessary	 to	 sustain	 the	 physics	mission of	 the	 LHC	 experiments	 through		
2030.	 	 It	will	 also	 inform	 our	 long-term	 vision	 to	 develop	 robust,	 efficient,	 and	
scalable	full	precision	tracking	algorithms	applicable	to	LHC	as	well	as	other	current	
and	future	experiments	--	for	example	LArTPC-based	neutrino	experiments,	medical	
imaging,	and	nuclear	physics	experiments.			

This	 pilot	 is	well	 aligned	with	HEP-CCE	mission	 to	 foster	 a	 “more	 common	HEP	
computing	 environment	 and	when	 possible	move	 away	 from	 experiment-specific	
software”.	This	proposal	 is	also	 in	alignment	with	 the	recommendations	produced	
by	the	ASCAC	Subcommittee	on	Synergistic	Challenges	in	Data-Intensive	Science	and	
Exascale	 Computing.	 Specifically,	 the	 ASCAC	 report	 calls	 for	 data	 analytics	
integration	with	 exascale	 computation	 systems,	 towards	 new	 kinds	 of	workflows	
that	will	impact	both	data-intensive	science	and	exascale	computing.	
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	This	 pilot	will	 benefit	 the	 ASCR	mission	 by	 demonstrating	 novel	 data-intensive	
workflows	and	proto-validation	and	verification	of	those.	As	we	will	discuss	in	detail	
in	 section	 3.3,	we	will	 explore	 the	 applicability	 of	 advanced	machine	 learning	
algorithms	 beyond	 domains	 such	 as	 linguistics	 and	 neurosciences,	 into	
precision	 tracking	 applications	 in	 the	 presence	 of	 high	 data	 volumes	 and	
combinatorial	ambiguities.	
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3.	Research	Plan	
	

	
Figure	1:	High-level	structure	and	components	for	this	research	project	

	

Our	strategy	to	investigate	pattern	recognition	for	HL-LHC	tracking	detectors	high-
level	 structure	 and	 components	 for	 this	 research	 project	 is	 outlined	
diagrammatically	 in	Figure	1.	 	This	pilot	project	will	test	the	envisioned	design	 	 in	
Figure	1	using	the	most	computationally	complex	and	resource	intensive	step	
of	charged	particle	 tracking,	namely	 the	 track	candidate	 formation	step.	The	
Detector	Modeling	 task	 provides	 us	with	 simulated	 event	 data	 representative	 of	
what	 is	 expected	 from	 the	 tracking	 detectors	 in	 the	HL-LHC	 era.	 	We	will	 use	 a	
generic	collider	geometry	compatible	with	an	HL-LHC	detector	design	noted	in	the	
flowchart	 of	 Figure	 1	 as	 Common	 Detector	 Descriptions.	 	We	 will	 also	 integrate	
existing	tracking	and	other	physics	tools	developed	by	ATLAS	and	CMS	noted	as	LHC	
Detector	Tools,	hence	leveraging	and	moving	fast	towards	the	implementation	of	our	
novel	 core	 developments	 shown	 at	 the	 center	 of	 the	 graph.	 	 Since	 Learning	
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Algorithms	will	be	a	fundamental	part	of	this	pilot,	our	Simulation	Application	must	
be	capable	of	generating	samples	both	for	testing	and	training.		There	are	two	core	
components	within	the	Algorithm	and	Methods	project	tasks:	Statistical		Algorithms	
and	Novel	Baseline	Algorithms.	They	are	the	central	focus	of	this	pilot	project.		 	Our	
group	 will	 greatly	 benefit	 from	 access	 to	 DOE	 HPC	 resources	 to	 optimize	 the	
performance	 of	 our	 algorithms	 through	 Hyperparameter	 Optimization	 techniques	
that	 in	 recent	 years	 have	 been	 shown	 to	 impact	 significantly	 the	 performance	 of	
statistical	learning	algorithms.	

The	success	of	the	pilot	project	is	quantified	within	the	task	set	noted	as			Evaluation	
and	Direction	in	the	flowchart	of	Figure	1.		

Precision	tracking	 is	a	critical	and	 important	task	within	an	LHC	experiment.	 	 It	 is	
usually	 performed	 after	 data	 is	 written	 to	 storage	 using	 the	 production	 batch	
system,	with	accuracy	control	parameters	set	 to	match	available	computing	cycles	
given	 a	data	 analysis	 schedule.	 	Frequent	External	Communications	 are	necessary	
with the precision tracking experts within the experiments to assure that results can
be	 interpreted	and	further	 improvements	can	be	achieved.	We	will	take	advantage	
of	 the	 accumulated	 offline	 tracking	 workflow	 knowledge	 and	 experience	 to	
implement	 a	 competitive,	 fast,	 real-time	 tracking	 workflow	 and	 rank	 its	
performance	(labeled	Decision	Process	task	in	the	graph)	after	comparative	analysis	
based	on	Metrics	developed	in	the	corresponding	task.		

3.1	Preparing	Data	Samples	
To	develop	and	 test	 the	pilot	LHC	 track	 formation	algorithm,	a	detector	geometry	
description and simulated space-point datasets must be prepared. The detector
geometry	we	will	 develop	 has	 to	 be	 generic	 yet	 sufficiently	 sophisticated	 to	 be	
representative	 of	 any	 LHC-like	 detector.	 Likewise,	 the	 simulated	 data	 will	 be	
representative	of	HL-LHC	physics	conditions	(event	topologies,	particle	kinematics),	
accurately	modeling	 the	 detector	 response.	 Finally,	we	will	 simulate	 events	with	
sufficient	statistics	and	store	them	in	a	data	format	appropriate	for	the	development	
and	 testing	 of	 the	 pilot	 algorithm.	 	 To	 address	 these	 requirements,	 we	 will	
implement	 a	 standalone	 simulation/data-preparation	 workflow	 in	 collaboration	
with	 the	HEP	Software	Foundation	Common	Tracking	Software	 (CTS)	Forum.	The	
CTS	 Forum	 is	 developing	 an	 experiment-independent	 tracking	 and	 geometry	
software	 library	 [aCTS]	 upon	which	we	will	 build	 realistic,	 generic	 LHC	 detector	
models.	We	will	use	the	models,	along	with	the	Geant4	simulation	toolkit	to produce	
simulated	data	samples.	An	order	of	10	million	simulated	events	containing	10	
billion	tracks	will	be	needed	for	this	pilot	project,	totaling	1	TB	of	data.	
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An	 energetic	 hard	 scatter	 vertex	 mixed	 with	 O(200)	 “pile-up”	 proton-proton	
collisions	 provides	 good	 statistics	 for	 accurate	 determination	 of	 the	 tracking	
efficiencies	 for	 the	 primary	 vertex,	 while	 also	 allowing	 for	 tests	 of	 tracking	
capabilities	 in	 the	 low	pT	 regime	of	 the	pile-up	 interactions,	and	 thus	presents	an	
accurate	and	overall	picture	of	the	tracking	performance.		

The	simulation	data	workflow	is	an	essential	first	piece	of	this	pilot	project.	We	thus	
aim	 to	have	 the	complete	chain	 in	place	within	 the	 first	 three	months.	We	expect	
development	then	to	be	iterative	during	the	algorithm	studies.	

1. Deliverable:	 realistic	 full	 simulation	 samples	 of	 generic	 HL-LHC	 tracking	
detector	with	a	format	and	size	that	allows	efficient	algorithm	development	

3.2	Novel	Baseline	Algorithms		
We	will	start	our	investigation	by	implementing	a	best-practice	solution	for	seeding	
and	track	candidate	formation.	We	will	use	this	reference	solution	as	a	benchmark	
both	in	terms	of	physics	performance,	and	computing	performance.	

The	 Kalman	 filter	 is	 a	 set	 of	 equations	 that	 recursively	 estimates	 the	 state	 of	 a	
(linear)	dynamical	system	at	 time	 t	 (at)	by	optimally	combining	noisy	predictions	
based	on	the	system	previous	state	(at-1)	with	some	number	of	noisy	observations	
(bt)	(Fig	2).		

	

Figure	 2:	 A	 Kalman	 filter	 operates	 recursively	 on	 streams	 of	 noisy	 input	 data	 to	 produce	 a	
statistically	optimal	estimate	of	the	underlying	system	state.	a)	The	equations	of	the	Kalman	Filter:	
(1)	a	1st	order	linear	dynamical	process,	in	which	the	state	of	the	system	(at)	evolves	according	to	the	
dynamics	matrix	A	with	additive	Gaussian	noise	(model	covariance	Wt).	(2)	Observations	(bt)	of	the	
state	 variable	 (at)	 are	 assumed	 to	 be	 a	 linear	 transform	 (B)	 of	 the	 state,	 perturbed	 by	 additive	
Gaussian	noise	(observation	covariance	Qt).	(3)	The	Kalman	Gain	(Kt)	is	calculated	according	to	the	
ratios	of	the	processes	(Wt)	and	observation	(Qt)	noise	covariances.	(4)	The	optimal	estimate	of	the	
system	 state	 (a^t)	 is	 produced	 by	 combining	 the	 estimate	 from	 the	 previous	 state	 	 with	 the	
observations	 (bt),	weighted	by	 the	Kalman	Gain.	b)	Block	diagram	 of	 system	dynamics	and	 signal	
combinations	in	the	Kalman	Filter.
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Over	the	last	three	decades,	Kalman	Filter	has	become	the	classic	algorithm	for	track	
fitting	 [FRUE]	 and	 formation	 [CKF].	 In	 track	 formation,	 the	 state	 of	 the	 KF	 at	 is	
represented	by	 the	position,	direction,	and	curvature	 (momentum)	of	a	 track	at	a	
detector	 surface	 t.	The	 charged	particle	propagates	 from	 surface	 t	 to	 surface	 t+1	
following	a	track	model	ft	which	is	in	general	non-linear2,	but	can	be	linearized	in	the	
neighborhood of the detector surface t. Under this assumption, the first term of ft	
Taylor	expansion	becomes	the	KF	dynamics	matrix	At	.		
	
	The	“Parallel	Kalman	Filter”	[PKF]	developed	by	a	member	of	our	team	represents	
the	 state	 of	 the	 art	 in	 track	 formation	 algorithms.	 Since	 it	 is	 designed	 to	 be	
vectorized	by	the	compiler,	and	to	be	run	in	parallel	on	multiple	threads	on	many-
core	 platforms,	 it	 serves	 as	 a	 good	 representation	 of	 future	 performance	 and	
therefore	is	the	algorithmic	benchmark	to	which	we	should	compare	our	results.	A	
parallel	implementation	of	the	Kalman	Filter	algorithm	optimized	to	run	efficiently	
on	GP-GPUs	will	be	of	interest	across	HEP	domains,	and	to	any	scientific	application	
that	needs	to	analyze	high-volume	time	series.	

2. Deliverable:	a	reference	solution	for	seeding	and	track	candidate	formation	
capturing	state	of	the	art	algorithms.		

3.3	Modeling	Track	Dynamics	
	
Experimental High Energy Physics has always been a fertile ground for statistical
techniques,	from	the	early	experimentations	with	neural	networks	of	the	LEP	era,	to	
the	widespread	 adoption	 of	Multivariate	 Analysis	 [TMVA]	 for	 Tevatron	 and	 LHC	
Run1	data	analyses,	 to	recent	successes	 in	 the	application	of	Machine	Learning	 to	
LHC	data	analyses	culminated	into	the	HiggsML	challenge	[HIML].	

Revolutionary	 advances	 in	 statistical	 techniques,	 and	 the	 availability	of	hardware	
resources	like	GP-GPUs	and	SSDs	give	us	the	opportunity	to	approach	problems	like	
track	 seeding	 or	 track	 formation	 in	 ways	 that	 only	 five	 years	 ago	 would	 have	
appeared	to	be	completely	out	of	reach.	

Based	on	the	experience	with	many	physics	analysis	applications	(most	notably	the	
discovery	of	single	 top	at	 the	Tevatron	and	 the	Higgs	at	 the	LHC),	we	expect	 that	
letting	an	algorithm	classify	a	seed,	or	group	a	list	of	space-points	together	in	a	track	

																																																								
2	The	track	model	represents	the	Lorentz	propagation	of	a	relativistic	charged	particle	of	momentum	
p	in	an	inhomogeneous	magnetic	field	B(x).	The	effects	of	the	particle	interaction	with	detector	
material	are	usually	represented	by	an	average	energy	loss,	added	to	the	track	model,	and	by	a	
stochastic	perturbation	of	the	trajectory	coming	from	multiple	scattering	which	contributes	to	the	
model	covariance	Wt	.	
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9	
candidate,	will	lead	to	improved	physics	performance	with	respect	to	a	hand-tuned	
traditional	algorithm.	Even	if	these	improvements	in	efficiency	or	purity	were	to	be	
incremental,	we	 believe	 neural	 network	 algorithms	will	 offer	 several	 advantages	
over	traditional	iterative	tracking	algorithms.	Firstly,	neural	network	algorithms	are	
computationally	very	regular,	and	lend	themselves	to	run	efficiently	on	data	parallel	
architectures,	 particularly	 on	 SIMD	 architectures	 like	 the	 vector	 units of	modern	
processors,	 and	 GP-GPU	 coprocessors.	 Secondly,	 neural network	 algorithms	 are	
generally	 more	 robust	 than	 traditional	 algorithms	 when	 running	 with	 reduced	
precision	 on	 low	 power	 approximate	 computing	 platforms.	 Finally,	 statistical	
learning	 algorithms	 can	 be	 used	 to	 discover	 new	 features	 in	 data	 sets	 they	 are	
trained	on	[JETS].	

The	 problems	 of	 track	 building	 and	 fitting	 are	 inherently	 iterative	 due	 to	 the	
sequential	nature	of	space-point	data.	A	charged	particle’s	propagation	through	an	
LHC detector is a sequence of steps determined by the track kinematics as well as
randomization	 due	 to	material	 scattering	 effects.	 Traditionally,	 the	Kalman	 Filter	
algorithm	 is	 used	 to	 model	 this	 evolution	 of	 the	 particle	 state,	 combining	
information	from	the	evolving	track	model	with	space-point	data	at	each	successive	
detector	 layer.	 Recurrent	 neural	 networks	 (RNNs)	 have	 enjoyed	
considerable	success	at	modeling	sequence	data	 in	various	 types	of	
applications.	RNNs	use	 recurrent	 connections	 to	 carry	hidden	 state	
or	 “memory”	 through	 successive	operations,	 allowing	modeling	 the	
dynamic	evolution	of	a	state.	These	algorithms	are	being	heavily	used	
in	 the	 areas	 of	 language	 translation	 [SSL]	 and	 speech	 recognition	
[FASR,	 SRDR].	 The	 Kalman	 Filter	 algorithm	 itself	 has	 a	 natural	
implementation	 as	 a	 recurrent	 neural	 network.	 Specifically,	 each	
state	 a’t	 of	 the	 system	 can	 be	 associated	 with	 a	 neuron	 in	 a	
recurrently	 connected	 network,	 and	 the	 system	 dynamics	 (or,	 equivalently,	 the	
probability	 of	 transitioning	 between	 states)	 are	 determined	 by	 the	 synaptic	
strengths	between	neurons	(A’).	The	observations	b’t		are	feedforward	inputs	to	the	
network	with	synaptic	weights	represented	by	the	observation	matrix	B’.	 	

Several studies from the Brain-Machine Interface community [SUSS] have shown
that	RNNs	can	outperform	Kalman	Filters	when	modeling	the	dynamics	of	nonlinear	
systems.	We	will	investigate	the	use	of	RNNs	for	building	and	fitting	LHC	tracks	and	
we	will	leverage	our	experience	in	this	area.		

RNNs	 while	 theoretically	 known	 to	 be	 powerful,	 historically	 suffered	 from	 the	
problem	 of	 vanishing	 gradients,	 thus	making	 them	 hard	 to	 train.	 Further,	 it	was	
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10	
challenging	with	 regular	 RNNs	 to	model	 complex	 long-term	 dependencies	 in	 the	
inputs.	 The	 Long	 Short	 Term	 Memory	 Recurrent	 Networks	 [LSTM]	 address	 the	
problem	 of	 long-term	 dependencies	 in	 inputs	 by	 introducing	 the	 idea	 of	 gates.		
Commonly,	there	are	three	types	of	gates	--	 input,	 forget	and	output	gates.	Briefly,	
what	these	gates	do	is	to	allow	for	the	network	to	selectively	accept	inputs	or	forget	
inputs.	 When	 used	 in	 an	 ensemble,	 these	 classes	 of	 models	 can	 capture	 the	
underlying	dynamics	of	many	previously	unsolved	time	varying	pattern	recognition	
problems.			

Given,	xt	as	the	time	varying	input	to	the	system;	

Wi,,	Wf	,	Wc,	Wo,	Ui,	Uf,	Uc,	Uo,	Vo		are	weight	matrices	(also	known	as	linear	operators	
that	transform	inputs);	

bi,	bf,	bc	and	bo		are	bias	vectors	(that	capture	the	first	order	statistics	);	

the	following	are	the	update	equations	for	the	memory	cells	at	each	time	step	t.	For	
the	input	gate,	the	updates	are	as	follows:	

	

The forget gate is updated thusly, where we weight the candidate inputs from the
previous	step	and	ft	,	the	input	response	of	the	forget	gate	

	

Lastly,	with	 the	new	 state	of	 the	memory	 cell	we	 can	 compute	 the	 value	of	 their	
output	gates	and	subsequently,	their	outputs:	

	

The	ability	to	learn	what	to	store	and	forget	to	reproduce	patterns	seen	in	the	inputs,	
gives	 LSTMs	 a	 greater	 range	 of	 expressive	 power	 than	 traditional	methods	 like	
Kalman	Filters	 to	discover	and	model	dynamics	 in	 the	 input	data.	 	Specifically,	 to	
model	track	patterns,	we will	use	simulated	data	where	we	know	the	trajectories	of	
the	particles	(in	3D	space)	and	feed	them	into	an	LSTM	network	to	train.	A	trained	
network	could	then	be	seeded	with	a	triplet	of	3D	space-points	of	a	single	particle	
and	used	to	build	a	list	of	space-points	(track	candidate)	compatible	with	the	seed.	
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11	
HEP	tracking	input	data	are	unusual	in	that	they	consist	of	a	sparse	series	of	high-
precision	space-point	measurements3.	Typical	applications	of	LSTM	networks,	such
as	 speech	 recognition,	usually	 rely	on	 a	 long,	 continuous	 time-series	of	 relatively	
low	 precision	measurements.	 	 Another	 characteristic	 of	HEP	 track	 finding	 is	 the	
availability	 of	 a	 detailed	 track	 propagation	 model,	 essential	 to	 constrain	 the	
extrapolation	from	one	detector	layer	to	the	next.	A	challenge	for	this	study	will	be	
to	 find	 efficient	 techniques	 to	 teach	 this	 strong	 prior	 knowledge	 to	 the	 LSTM	
network	while	maintaining	its	power to	discover autonomously	aspects	of	the	track	
model	from	the	high-precision	inputs.	Another	challenge	in	applying	LSTMs	to	this	
problem	will	be	to	explore	and	optimize	the	architecture	of	the	network.	To	do	this,	
we	plan	to	use	hyper-parameter	search	methods	such	as	Spearmint	[SPEA]	relying	
on	DOE	HPC	platforms	like	NERSC	cori		to	perform	the	search	in	a	reasonable	time.		

If	successful,	this	investigation	will	greatly	expand	the	applicability	of	RNNs	beyond	
traditional domains such as linguistics and neurosciences, to scientific applications,
including	HEP	tracking,	that	require	precision	pattern	recognition	in	the	presence	of	
high-volume	input	data	and	combinatorial	ambiguities.		

3. Deliverable:	Novel	pattern	recognition	algorithm	 to	build	 track	candidates	
from	seeds	and	space-points.	

3.4	Implementation	to	LArTPC	applications	

The	 international	 long	 and	 short	 baseline	 neutrino	 program,	 which	 includes	
MicroBooNE,	ICARUS,	SBND,	and	DUNE	can	also	benefit	from	this	pilot	project.	The	
LArTPC	 community	 faces	 many	 computational	 challenges	 with	 3D	 tracking	 and	
particle	identification	in	the	presence	of	noise	and,	in	some	cases	(when	located	on	
the	 surface	as	opposed	 to	underground)	 the	unwanted	background	of	 cosmic	 ray	
tracks.	 	The	 results	 of	 this	pilot	 in	 the	 areas	 of	parallel	 tracking	 through	Kalman	
filter	 advances	 and	 Deep	 Learning	 will	 also	 benefit	 this	 community.	 	 We	 will	
implement	the	advances	we	will	make	utilizing	the	HL-LHC	like	infrastructure	in	the	
protoDUNE	 (a	 prototype	 detector	 for	 DUNE)	 framework,	 and	 utilize	 protoDUNE	
Simulations	to	evaluate	performance.	

4	 Deliverable:	 Adapt	 track	 finding	 algorithm	 and	 evaluate	 in	 LArTPC	
environment.	

																																																								
3	A	state	of	the	art	tracking	detector	will	measure	the	position	of	O(10)	3D	space-
points	per	track	with	O(10-5)	precision.	
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12	
3.5	Metrics,	Analysis	
	
The	 applicability	 of	 this	 algorithm	 work	 to	 future	 tracking	 scenarios	 can	 be	
quantified	by	computing	efficiency	and	physics	performance,	including	any	relative	
trade	off	between	the	two.	 	Typical	physics	performance	metrics	for	tracking,	such	
as	 track-finding	 efficiency	 and	 the	 rate	 of	 finding	 “fake”	 tracks	 arising	 from	
combinatorics	or	bad	seeding,	can	be	used	to	determine	the	baseline	viability	of	the	
methods	 being	 studied.	 Efficiencies	 below	 90%	 or	 fake	 rates	 of	more	 than	 5%,	
integrated	over	the	fiducial	volume,	are	not	suitable	for	online	selection	or	analysis.	
For	algorithmic	computational	efficiency,	a	resulting	list	of	tracks	and	hits	must	be	
attainable	within	300	ms.	This	 time	constraint	 is	due	 to	 further	 required	 steps	of	
sorting	and	selection	of	tracks,	in	order	to	remove	duplicates.	It	will	be	possible	to	
tune	 the	 “working	 point”,	 in	 terms	 of	 efficiency	 vs.	 fake	 rate,	 to	 produce	 tracks	
satisfying	 the	 physics	 performance	 criteria	 and	 the	 time	 budget.	

Another metric that quantifies stability of an algorithm in realistic detector
environments,	 is the	ability	 to	maintain	performance	when	presented	with	 inputs	
that	have	been	systematically	altered	with	respect	 to	 the	datasets	used	 for	 testing	
and	training.	This	enables	quantification	of	the	stability	of	the	algorithms	in	realistic	
data-taking	 scenarios.	 This	 “input	 drift”	 can	 be	 caused	 by	 numerous	 sources,	
including,	 alignment	 of	 the	 tracking	 system,	 and	 effects	 of	 radiation	 damage	 on	
signals	in	the	sensors	of	the	tracker.	The	effects	of	all	of	these	sources	of	drift	can	be	
quantified	by	their	effect	on	tracking	efficiency	and	fake	rate.	Computing	time	is	also	
a	useful	metric	to	assess	the	impact	of	input	drift.		

One	 of	 the	 main	 issues	 with	 statistical	 learning	 techniques	 is	 estimating	 the	
systematic	 error	 associated	 with	 model	 training,	 or	 measuring	 variation	 in	
generated	models	 across	many	 training	 runs,	 given	 the	 same	 starting	 conditions.	
Training	questions	that	will	be	addressed	here	include		the	sensitivity	of	the	model	
to	(1)	variations	 in	test	data,	(2)	changes	 in	training	samples	class	ratios,	and	 	(3)	
changes	in	the	model	hyperparameters.	

For	 this	pilot	project	 overall,	 success	will	be	primarily	measured	using	 efficiency	
and	physics	performance.		We	will	provide	initial	measurements	of	input	sensitivity	
and	systematic	uncertainties.	

3.6	Connection	to	other	projects	
We	will	 collaborate	with	 the	Common	Tracking	Software	 (CTS)	 forum	of	 the	HEP	
Software	 Foundation.	 We	 will	 use	 their	 existing	 toolkit	 [aCTS]	 which	 includes	
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13	
geometrical	description	and	track	extrapolation	tools,	to	setup	our	shared	HL-LHC	
detector	simulation,	and	as	building	blocks	to	implement	our	reference	seeding	and	
track	 formation	chain.	We	will	contribute	 to	CTS	 improvements	 to	 their	 tools,	and	
share	new	common	tracking	tools	we	may	develop.	

	

3.7	Outlook	
This	 pilot	 will	 inform	 our	 vision	 of	 developing	 advanced	 pattern	 recognition	
algorithms	to	address	the	expected	resource	deficit	for	charged	particle	tracking	at	
the	LHC	and	other	HEP	 future	experiments	 including	at	LBFN.	During	the	pilot	we	
will	 attack	 the	 most	 pressing	 issue,	 which	 is	 the	 track	 candidate	 formation	
algorithm.	This	is	embedded	in	our	vision	that	encompasses	the	full	chain	of	charged	
particle	processing:	
	
v filtering	in	real-time	most	background	events	by	running	precision	tracking	and	

vertexing	on	dedicated	hardware	in	O(1)µs;	
v speeding	 up	 simulation	 of	 charged	 particle	 propagation	 using	 generative	

networks	instead	of	traditional	Monte	Carlo	techniques;	
v optimizing	 track	 seeding	 algorithms	 and	 data	 structures	 to	 address	 the	

combinatorial	issues	deriving	from	increased	LHC	luminosity	(and	energy);	
v applying	 image	processing	 techniques	 to	 seed	 classification,	 track/space-point	

association,	beam-spot	structure	detection.		

	
The	primary	outcome	of	the	pilot	will	be	a	first	iteration	on	the	framework	shown in	
Figure 1, to develop and evaluate tracking algorithms efficiently, reliably, and in an
experiment-independent	way	with	wide	applications	in	HEP.	This	will	enable	
collaboration	with	tracking	experts	from	the	LHC	community	and	beyond.		
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4.	Project	Organization:	Coordination,	Management	and	
Deliverables 	

4.1	Management	and	Coordination	
This	project	will	be	executed	by	 three	groups	at	CalTech,	FermiLab,	and	LBNL/UC	
Berkeley.	US	ATLAS,	US	CMS	will	be	external	partners	providing	mainly	access	 to	
data	 and	 common	 software.	 	 We	 will	 collaborate	 with	 other	 LHC and	 HEP	
communities	through	DOE’s	HEP	Center	for	Computational	Excellence	and	the	HEP	
Software	Foundation.		
	
Given	the	tight	timescale	and	the	nature	of	our	research,	this pilot	project	will	need	
quick	development	cycles,	with	continuous	 integration	of	our	work	products,	and,	
crucially,	continuous	communication	among	team	members.	We	will	use	an	instance	
of	the	Basecamp	web-based	project-management	tool	to	coordinate	our	schedules,	
communicate	through	chat	rooms	and	mailing	lists,	as	well	as	to	keep	records	of	the	
deliverables	progress,	of	 all	minutes,	 etc.	We	will	maintain	our	 code	on	HEP-CCE	
github,	and	will	peer	review	our	software	artifacts	before	pushing	them	to	the	main	
repository.	We	will	have	focused	technical	bi-weekly	meetings	to	prioritize	the	work	
for	 the	 week	 and	 to	 review	 open	 issues.	 Once	 a	 month	 we	 will	 have	 a	 longer	
“strategical”	meeting	led	by	the	three	co-PIs.	
	
To	ensure	a	fruitful	collaboration,	members	of	the	team	will	participate	regularly	to	
CCE and HSF meetings.
	
The	Caltech	CMS	group	has	leading	roles	and	responsibilities	in	the	CMS	experiment	
in the areas of physics, trigger, software, computing & networks as well as future
detector	R&D.	A	 crucial	aspect	of	 the	Caltech	 approach	 is	 taming	 the	 information	
flow	 from	 the	 LHC	 collisions	 vertically:	 from	 triggering,	 dataset	 definition,	 data	
quality	 monitoring,	 software	 development,	 to	 distributed	 computing	 and	
collaborative	 systems,	 all	 the	way	 to	 data-driven	 physics	 analysis	with	multiple	
controls	 for	 validation	 and	 verification	 towards	 rapid	 discovery	 and	
characterization of	signals	of	new	physics.	The	group	collaborates	on	campus	with	
the	 Center	 for	 Data-Driven	 Discovery	 (CD3)	 http://cd3.caltech.edu)	 and	 DOLCIT	
(the	 center	 for	Decision,	Optimization,	 and	 Learning	 at	 the	 California	 Institute	 of	
Technology	 http://dolcit.cms.caltech.edu/index.html)	 and	 has	 traditionally	 very	
strong	working	relations	with	industry	as	well	as	research	centers	and	laboratories	
around	the	world	on	agile	intelligent	systems	that	integrate	 learning	and	planning.		
The	group	has	launched	and	is	leading	in	CMS	a	powerful	precision	timing	detector	
R&D	 program	 and	 maintain	 a	 leading	 role	 in	 the	 precise	 calibration	 of	 the	
electromagnetic	 lead	 tungstate	 calorimeter	 and	 the	 mitigation	 of	 noise	 and	
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15	
operation	of	 the	hadron	calorimeter	 including	 the	Phase-I	HO	 readout	upgrade	 to	
SiPMs.		The	group	has	played	a	pivotal	role	in	the	preparation	and	execution	of	the	
physics	program	in	the	electron,	photon,	missing	energy	and	jets	physics	objects,	in	
the	trigger	and	dataset	definitions	with	focus	on	the	triggers	for	new	physics,	and	in	
the	 SUSY,	 Exotica	 and	 Higgs	 physics	 groups	 --	 including	 the	work on	 the	 Higgs	
discovery and characterization in diboson final states . Caltech’s Tier 2 is the very
first	Tier	2	 of	 the	 LHC	 grid.	 It	was	proposed	 and	prototyped	 in	1999	 and	 it	was	
commissioned	and	brought	in	production	in	2001.	It	provided	a	proof	of	concept	of	
the	Tier	2	and	the	LHC	Data	Model.	The	Tier	2	at	Caltech	provides	substantial	and	
reliable	computational	and	storage	resources	to	US	CMS	and	CMS,	(more	than	66.8	K	
of	HS06	computing	units	and	4.8	petabytes	of	raw	storage).	It	combines	production	
processing	of	simulated	events,	as	well	as	support	for	US	CMS	physics	analysis,	and	
computing,	software	systems	and	network	development.	It	is	an	active	part	both	of	
the	 production	 and	 computation	 R&D	 efforts	 in	 CMS.	 It	 is	 the	 first	 Tier	 2	 to	
commission	the	100	Gbps	uplink	in	2014	and	lead	the	effort	to	help	all	US	CMS	Tier	
2	sites	reach	such	a	goal.	A	testbed	is	presently	set	up	at	the	Caltech	Tier2	in	order	
to	 improve	 the	support	 infrastructure	 for	data	 federations	at	CMS.	 	As	a	 first	step,	
we	 have	 built	 systems	 that	 produce	 and	 ingest	 network	 data transfers	 up	 to	 80	
Gbps.	As	part	of	this	project,	work	within	the	Caltech	group	is	ongoing	to	develop	a	
plugin	 for	 CMSSW	 based	 on	 libdavix	 and	 better	 interaction	 of	HTTP-over-Xrootd	
with	the	OSG	distribution.	
	
The	 Caltech	 CMS	 group	 has	 also	 an	 associated	 hybrid	 physics/engineering	 team	
with	 expertize	 on:	 (1)	 state	 of	 the	 art	 data	 transfers	 over	 long	 distances,	 (2)	
pervasive	 real-time	 monitoring	 of	 networks	 and	 end-systems,	 (3)	 autonomous	
steering	 and	 control	 of	 large	 distributed	 systems	 using	 robust	 agent-based	
architectures	and real-time	monitoring	of	the	hundreds	XrootD	data	servers	used	by	
the	LHC	experiments	supported	MonALISA	system,	(4)	the	development	of	software	
driven	multilayer	 dynamic	 circuits,	 and	 autonomous	 optical	 patch	 panels	 which	
provide	 a	 virtualized	 interconnection	 service	 for	 megadata	 centers	 and	 cloud	
computing,	 (5)	 software	 defined	 networking,	 (6)	 integration	 of	 the	 network	
awareness	and	control	into	the	mainstream	of	the	experiments’	data	and	workflow	
management	as	 in	Caltech’s	OliMPS	and	ANSE	projects,	and	 (7)	 the	exploration	of	
Named	Data	Networking	as	a	possible	content-centric	future	architecture	replacing	
the current Internet, together with ESnet and leading groups in climate science led
by	Colorado	State	that	have	deployed	an	NDN	testbed.		The	Caltech	team’s	expertise	
is	based	on	many	years	of	engagement	in	LHC	physics,	computing	and	networking.	
Beyond our strong ties with many academic partners, we have built a large network
of	 partnerships	with	 the	major	 R&E	 networks	 in	 the	 North	 and	 South	 America,	
Europe	and	Asia,	as	well	as	network	vendors,	computer	and	storage	manufacturers,	
and	computing	system	integrators.			
	
The	CMS	Caltech	team	in	based	at	Caltech,	FNAL	and	CERN.			
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Fermilab	 is	directly	 involved	 in	 the	CMS	Phase-II	upgrade	project	 for	 the	HL-LHC	
physics program. In addition, the CMS LHC Physics Center (LPC) is located at
Fermilab.	 Scientists	 within	 this	 center	 are	 directly	 involved	 in	 physics	 analysis,	
tracking	 software,	 detector	 upgrades,	 and	 CMS	 management. The	 FNAL	 core	
software	 infrastructure	group	with	 the	Scientific	Computing	Division	 (SCD)	 is	 the	
home	 of	 the	 principal	 authors	 of	 the	 software	 reconstruction	 framework	 used	
within	CMS,	CMSSW.	 	This	group	adapted	CMSSW	 into	art,	a	 software	 framework	
now	used	by	 the	majority	of	Fermilab’s	muon	and	neutrino	program	experiments.	
Both	 CMSSW	 and	 art	 use	 state-of-the-art	 C++	 and	 provide	 interfaces	 and	
deployment	strategies	to	most	of	the	production	physics	algorithms	 in	use	by	CMS	
and	 the	 Fermilab	 experiments.	 	 They	 follow	 a	 long	 history	 of	 transformative	
collaborative	 frameworks	 and	 software	 infrastructure	developed	 for	 the	previous	
generation	 major	 HEP	 experiments	 CDF	 and	 D0.	 	 The	 latest	 major	 upgrade	 of	
CMSSW	for	support	of	multithreading	was	designed,	coordinated,	and	development	
by	this	group.		The	group	is	also	responsible	for	major	performance	improvements	
throughout	the	software	stack	in	use	by	all	Fermilab-based	experiments.		The	FNAL	
SCD	reconstruction	group	has	been	directly responsible	 for	CMS	tracking	software	
upgrades	 to	 evaluate	 vector	 processing	 on	 Intel	 Xeon	 Phi.	 	 They	 have	 also	 been	
responsible	for	developing	particle	flow	algorithms	to	be	used	for	the	CMS	Phase-II	
high	 granularity	 calorimeter	 (HG-CAL)	 upgrade.	 The	 SCD	 simulation	 group	 and	
experts	in	Geant4,	and	run	the	SciDAC	Geant	project.		SCD	is	also	managing	research	
projects	 through	Computational	HEP	 to	make	 experiment	 software,	 including	key	
infrastructure	components	usable	within	current	leadership	computing	facilities.	
This	mix	of	direct	CMS	 involvement,	collider	physics,	 tracking	algorithms,	particle	
simulations,	 and	 large-scale	 software	 framework expertise	 ensure	 success	 of	 this	
pilot	project.					
	
	
The	LBNL	ATLAS	Software	group	has	led	the	development	of	ATLAS	Core	Software	
since	 2001,	 introducing	 new	 software	 paradigms	 such	 as	 component-based	
software, data-driven application steering, multi-process and multi-thread
concurrency.	 The	 group	 has	 always	 been	 at	 the	 forefront	 of	 HEP	 application	
research	of	novel	computing	platforms	such	as	Intel	Xeon	Phi	and	IBM	TrueNorth.	
The	 LBNL	NERSC	Data	 and	 Analytics	 Services	 group	 leads	 the	 large	 and	 diverse	
NERSC	user	community	 in	adopting	best-of-breed	practices	and	tools	 for	scientific	
data	management,	 analysis,	 and	 visualization.	 It	 has	 received	 an	 ASCR	 award	 to	
further	 the	research	 in	highly	scalable	Statistics	and	Machine	Learning	algorithms	
(MANTISSA).	 The	 UC	 Berkeley	 Redwood	 Center	 for	 Theoretical	 Neuroscience	
develops	mathematical	and	computational	models	of	the	underlying	neurobiological	
mechanisms	 involved	 in	perception,	 cognition,	 learning,	and	motor	 function.	They	
collaborate	with	experimental	neuroscience	labs in	the	design	of	experiments	and	in	
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17	
the	analysis	of	neural	data.		The	project	will	profit	from	this	unique	combination	of	
skills	to	address	effectively	its	data	engineering,	and	pattern	recognition	challenges.	
	
	
	

4.2	Summary	of	Deliverables	and	Milestones	
	

Table	1:	Project	Deliverables	and	Milestones	

	Group	 Deliverable	 Due	 Institutions	
Simulation	 1:	Realistic	full	simulation	samples	of	generic	

HL-LHC	tracking	detector.	
Q4	16	 LBL,	

FNAL	

Algorithm	 2:	Reference	solution	for	seeding	and	track	
candidate	formation	using	state	of	the	art	
algorithms.	

Q2	17	 FNAL,	
Caltech	

		 3:	Pattern	recognition	algorithm	to	build	track	
candidates	from	seeds	and	space-points.	

Q3	17	 Caltech,	
LBL	
	

	 4:	Adapt	track	finding	algorithm	and	evaluate	in	
LArTPC	environment	

Q4	17	 FNAL,	
Caltech	

Milestone: Demonstrate full simulation and

reconstruction	chain	for	generic	HL-LHC	tracking	detector	

and	produce	plan	for	full	development	and	

implementation		

Q4 17 ALL
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5.	Budget	
	
This	pilot	project	is	applying	for	funding	for	one	year	from	DOE	Advanced	Scientific	
Computing	Research	and	High	Energy	Physics	programs.		

Caltech:	$200K		
Caltech	will	be	funded	through	a	subcontract	with	FNAL	
v Jean-Roch	Vlimant,		a	research	scientist		with	expertise	in	large	scale	

computation	systems	and	data	analytics	will	work	at	40%	on		the	development	
of the algorithm and its deployment in pattern recognition.

v Josh	Bendavid,	a research	scientist	with	expertise		in	large	scale	computation	
and	data	analytics	will	work	at	30%	on	the	pattern	recognition	algorithm	and	
on	the	reference	algorithm.	

v Stephan	Zheng	a	Computer	Science	PhD	student	on	AI	methods		at	EAS	will	
work	at	40%	on	the	pattern	recognition	algorithm	and	on	the reference	
algorithm	and	two	HEP	Physics	PhD	students	will	work	at	30%	each	on	
validation	studies	of	the	LHC	and	DUNE	applications	of	the	reference	algorithm.	

v Pietro	Perona,	Professor	of	Electrical	Engineering		and	Computer	Science	at	
Caltech’s	EAS	Division		will 	work	unfunded	as	a	senior	advisor	for	this	pilot	
project.	

v Maria Spiropulu,	Professor	of Physics	at	Caltech’s	PMA	will	work		at	5%	on	the	
pattern	recognition	and	reference	algorithm	as	well	as	the	overall	pilot	project	
management,	and	5%	on	HEP-CCE	coordination	towards	the	long	term	strategy.	

FNAL:	$275K	
v Lindsey	Grey,	an	associate	scientist	with	the	Scientific	Computing	Division,	will	

work	at	25%	on	the	simulation	and	the	reference	algorithm.	
v Giuseppe	Cerati,	an	associate	scientist	with	the	Scientific	Computing	Division,	

will	work	at	30%	on	the	pattern	recognition	algorithm	and	on	the	reference	
algorithm,	including		a	LArTPC	application	and	evaluation	

v Jim	Kowalkowski,	a	computer	science	researcher	with	the	Scientific	Computing	
Division	will	work	at	15%,	and	to	work	on	simulation	input	data	samples	
representative of HL-LHC physics. He will alsowork at 7% on the LArTPC
implementation	and	HEP-CCE	interface	and	communication	of	results.	

v Panagiotis	Spentzouris,	scientist	and	head	of	the	Scientific	Computing	Division,	
will	work	unfunded,	on	the	overall	project	management	and	as	senior	advisor	
for	this	pilot	project.	
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LBNL:	$275K	
v Mayur	Mudigonda,	a	graduate	student	with	the	UC	Berkeley	Redwood	Center	for	

Theoretical Neuroscience, willwork full time on designing the pattern
recognition	algorithm.	

v Steve	Farrell,	a	postdoc	with	LBNL	Physics	Division,	will		work	at	55%	on	
optimizing	the	inputs,	results,	and	in	general	the	performance	of		the	pattern	
recognition	algorithm.	

v Paolo	Calafiura,	a	scientist	with	LBNL	Computing	Research	Division	will	work	at	
10%		on	simulating	input	data	samples	representative	of	HL-LHC	physics,	as	
well	as	the	overall	pilot	project	management.	He	will	also	work	at	5%	with	HEP-
CCE	to	produce	a	long-term	plan	for	full	development	and	implementation.	

v Prabhat,	a	scientist	with	NERSC	Data	&	Analytics	group,	will		work	at	10%,	
advising	the	pilot	project	on	how	best	to	exploit	NERSC	cori	to	train	and	test	our	
algorithms.	 	
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